Skip to content Skip to navigation

Meromorphic Function Compatible with Homomorphisms of Actions on C

Commun. Math. Anal.
Volume 13, Number 2 (2012), 116 - 130

Meromorphic Function Compatible with Homomorphisms of Actions on C

Price: $20.00

Abstract

We consider homomorphisms H:G1⟶G2 of holomorphic (group or pseudo-group) actions G1 and G2 on domains Ω1 and Ω2respectively in C, together with meromorphic functions f that are compatible with these homomorphisms in the sense that

$\begin{equation} f(g(z))=H(g)(f(z))\nonumber \end{equation}$

for every gG1 and z∈Ω1. Such situations are rooted in the cases of elliptic and modular functions, modular and automorphic forms, etc... We investigate various aspects of such cases, such as constructions and correspondences between families of functions compatible with different homomorphisms, that transform one family of functions compatible with one homomorphism to another one compatible with a different homomorphism.