Skip to content Skip to navigation

On Commutativity of Prime $\Gamma-$Rings with $\theta-$Derivations

Volume 20, Number 2 (2017), 39 - 44

On Commutativity of Prime Γ-Rings with θ-Derivations

Price: $20.00

Abstract

Let $M$ be a prime $\Gamma-$ring, $I$ a nonzero ideal, $\theta$ an automorphism and $d$ a $\theta-$derivation of $M$. In this article we have proved the following result: (1) If $d([x,y]_{\alpha})=\pm([x,y]_{\alpha})$ or $d((x\circ y)_{\alpha})=\pm((x\circ y)_{\alpha})$ for $x, y\in I; \alpha\in \Gamma$, then $M$ is commutative. (2) Under the hypothesis $d\theta=\theta d$ and $Char M\neq2$, if $(d(x)\circ d(y))_{\alpha}=0$ or $[d(x),d(y)]_{\alpha}=0$ for all $x, y\in I;\alpha\in \Gamma$, then $M$ is commutative. (3) If $d$ acts as a homomorphism or an anti-homomorphism on $I$, then $d=0$ or $M$ is commutative. Moreover, an example is given to demonstrate that the primeness imposed on the hypothesis of the various results is essential.